C++
debugging

C++ debugging

Bruce Merry

IOl Training Dec 2013




C++
debugging

Bruce Merry

Outline

The GNU Debugger
m Introduction

m Setup

m Demo

Catching Bugs

m Assertions

m Debug Containers
m Address Sanitizer
m Valgrind




Outline

C++
debugging

Bruce Merry

The GNU Debugger
m Introduction



What is GDB?

C++
debugging

Bruc

m Tool that peeks inside your program
m Helps examine what is happening
m Helps trace crashes

m Integrated into Eclipse, some other IDEs



GDB vs debug printing

C++
debugging

Bruc

Debug prints are good for:

m Dumping large amounts of data, when you know what
you want to see

A debugger is better for:
m Following the flow of execution
m Determining the cause of a crash
m Testing hypotheses as execution proceeds




Outline

C++
debugging

Bruce Merry

The GNU Debugger

m Setup



Compiler Options

C++
debugging

Bruce Merry

m Do not compile with 02
m Compile with —g to embed debug information
m On Ubuntu 13.10, use —gdwarf-3 as well




Pretty Printers for STL Containers

C++
debugging

Bruce Merry

For home use (Ubuntu 13.10):
m Install 1ibstdc++6-4.8-dbg
m Put the following in .gdbinit:

python
sys.path.insert (0, ’/usr/share/gcc-4.8/python’)

end

This allows STL containers to be pretty-printed



Outline

C++
debugging

Bruce Merry

The GNU Debugger

m Demo



C++
debugging

Demo




Outline

C++
debugging

Bruce Merry

Catching Bugs
m Assertions



Assertions

C++
debugging

Bruce Merry

Reminder:
assert (condition_that_should_be_true);

Use GDB to debug the failure.

Assertions



Outline

C++
debugging

Bruce Merry

Debug Containers

Catching Bugs

m Debug Containers



Unsafe Containers

C++
debugging

Bruce Merry

STL containers do not check for errors:

vector<int> v (4);
v[4] = 123; // ANYTHING can happen!

Debug Containers

This is good for performance, bad for debugging.



GCC Debug Containers

C++
debugging

Bru

Compile with -D_GLIBCXX_DEBUG.

/usr/include/c++/4.8/debug/vector:346:error: attempt to subscript container
with out-of-bounds index 4, but container only holds 4 elements.

Objects involved in the operation:

sequence "this" @ 0x0x7fffedl8fa70 {
type = NSt7__debugébvectorIiSaliEEE;

}

Aborted (core dumped)

Debug Containers

Again, use GDB to investigate.



Outline

C++
debugging

Bruce Merry

Catching Bugs

m Address Sanitizer



Address Sanitizer

C++
debugging

Bruc

m Compiler flag that inserts checks into your code (about
2x slowerl!)

m Not specific to STL, so can catch array errors
m Also catches other errors like use-after-free
m Available from GCC 4.8



C++
debugging

Bru

Address Sanitizer

Using Address Sanitizer

Compile with -fsanitize=address. Run.

==25928== ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60040000e000 at
WRITE of size 4 at 0x60040000e000 thread TO

#0
#1
#2

0x400dfc (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40(
0x7f4all2added (/1lib/x86_64-1linux—-gnu/libc-2.17.s0+0x21ded)
0x400c78 (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40(

0x60040000e000 is located 0 bytes to the right of 16-byte region [0x60040000dff0, 0x6C
allocated by thread TO here:

#0
#1

0x7f4allb7684a (/usr/lib/x86_64-linux-gnu/libasan.so0.0.0.0+0x1184a)
0x4016lc (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40]

0x401562 (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40]
0x4013e2 (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40]
0x401140 (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40]
0x400fab (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40(
0x400da5 (/home/bmerry/compolymp/presentations/cxx-debug/src/debugvector+0x40(

0x7f1564863ded4 (/1lib/x86_64-linux—-gnu/libc-2.17.s0+0x21ded)

The asan_symbolize script can help decide addresses
into line numbers (it is not shipped with GCC: you need to
download it or install clang).



Outline

C++
debugging

Bruce Merry

Catching Bugs

m Valgrind



Valgrind

C++
debugging

Bruc

m Separate program; no recompilation necessary
m More robust and powerful than ASAN

m Also catches uninitialized data

m Slower and more memory-hungry




Using Valgrind

C++
debugging

valgrind ./myprogram

==26020== Invalid write of size 4

==26020== at 0x400AO0F: main (debugvector.cpp:7)

Address 0x5ala050 is 0 bytes after a block of size 16 alloc’d
at 0x4C2A879: operator new(unsigned long) (in /usr/lib/valgrind/vgpreloc
by 0x400FB7: __gnu_cxx::new_allocator<int>::allocate (unsigned long, voic
by 0x400F02: ::_Vector_base<int, std::allocator<int> >::_M_allocate (u
by 0x400DFO0: ::_Vector_base<int, std::allocator<int> _M_create_stc
by 0x400C6C: std::_Vector_base<int, std::allocator<int> >::_Vector_base
by 0x400B43: std::vector<int, std::allocator<int> >::vector (unsigned lor

==26020== by 0x4009F1: main (debugvector.cpp:6

Valgrind




	The GNU Debugger
	Introduction
	Setup
	Demo

	Catching Bugs
	Assertions
	Debug Containers
	Address Sanitizer
	Valgrind


